Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress.

Identifieur interne : 000012 ( Main/Exploration ); précédent : 000011; suivant : 000013

Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress.

Auteurs : Bernd Zechmann [États-Unis]

Source :

RBID : pubmed:32825274

Abstract

Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.

DOI: 10.3390/plants9091067
PubMed: 32825274
PubMed Central: PMC7569779


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress.</title>
<author>
<name sortKey="Zechmann, Bernd" sort="Zechmann, Bernd" uniqKey="Zechmann B" first="Bernd" last="Zechmann">Bernd Zechmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32825274</idno>
<idno type="pmid">32825274</idno>
<idno type="doi">10.3390/plants9091067</idno>
<idno type="pmc">PMC7569779</idno>
<idno type="wicri:Area/Main/Corpus">000012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000012</idno>
<idno type="wicri:Area/Main/Curation">000012</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000012</idno>
<idno type="wicri:Area/Main/Exploration">000012</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress.</title>
<author>
<name sortKey="Zechmann, Bernd" sort="Zechmann, Bernd" uniqKey="Zechmann B" first="Bernd" last="Zechmann">Bernd Zechmann</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plants (Basel, Switzerland)</title>
<idno type="ISSN">2223-7747</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32825274</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Print">2223-7747</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Plants (Basel, Switzerland)</Title>
<ISOAbbreviation>Plants (Basel)</ISOAbbreviation>
</Journal>
<ArticleTitle>Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E1067</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/plants9091067</ELocationID>
<Abstract>
<AbstractText>Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zechmann</LastName>
<ForeName>Bernd</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-7702-2588</Identifier>
<AffiliationInfo>
<Affiliation>Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Plants (Basel)</MedlineTA>
<NlmUniqueID>101596181</NlmUniqueID>
<ISSNLinking>2223-7747</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">antioxidants</Keyword>
<Keyword MajorTopicYN="N">arabidopsis</Keyword>
<Keyword MajorTopicYN="N">chloroplasts</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">mitochondria</Keyword>
<Keyword MajorTopicYN="N">reactive oxygen species</Keyword>
<Keyword MajorTopicYN="N">resistance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32825274</ArticleId>
<ArticleId IdType="pii">plants9091067</ArticleId>
<ArticleId IdType="doi">10.3390/plants9091067</ArticleId>
<ArticleId IdType="pmc">PMC7569779</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phytopathology. 2020 Jan;110(1):6-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31910089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Aug;20(8):1163-1178</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31305008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jun 1;18(16):2106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23148658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2020 Jan;22(1):70-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31283085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Viruses. 2020 Jan 22;12(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31979056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Apr;20(4):463-470</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30467940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jun 25;10:800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31293607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 20;5:566</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25049418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Sep 15;171(15):1444-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25077999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2020 Jun;25(6):566-576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32407696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Aug;26(8):937-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23634840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Jul 17;13:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23865417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2017 Aug 7;10(8):1107-1125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Nov;23(11):1448-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20923352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Mar 19;6:171</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25852720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 May 28;9:705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29892308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2017 Apr;23(2):249-268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28461715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jan;49(1):159-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17144898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2019 Dec 26;20(1):1020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31878885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2012 Jul;102(7):662-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22571419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:267-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22726121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2019 Nov;20(11):1588-1601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31286679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2020 Jun;25(6):549-565</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32407695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Mar;55(397):605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14966215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2009;47:177-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19400653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2019 Oct;42(10):2827-2843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31222757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Sep 13;10:1115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31608082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2020 Feb;110(2):345-361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31577162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2448-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15308753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Oct 18;8:1720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29093720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Aug 22;8:1353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28878783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Aug;153(4):1692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2012 Oct;59:44-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22122784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2006 Nov;28(11):1091-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):865-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Essays Biochem. 2018 Apr 13;62(1):21-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29273582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2331-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Feb 18;10:166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30833954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):726-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2007 May;9(3):427-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17143806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Nov;45(11):1578-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Mar;56(413):921-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15668222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1271-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24328795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jan;66(1):25-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25336685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Jun 29;8(1):49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28663550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2010 Oct 15;431(2):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20874710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Jan;78(1-2):109-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2014 May;186(2):245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24631670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2017 Oct;263:89-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28818387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Oct;211:77-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23987814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Dec;48(12):1702-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2014 Jul;95(Pt 7):1415-1429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24722679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Mar 1;119(5):737-747</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27941090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2019 May;24(5):413-430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30824355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2018 Sep;23(9):833-844</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29970339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Nov;188(3):711-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Sep;238:115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26259180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):895-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21234598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(8):2147-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18535298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2020 Aug;56:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31786411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Micron. 2013 Feb;45:119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23265941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2019 Dec 06;10:2764</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31866963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2014 Jul 1;171(11):940-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24913051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jun 05;8(6):e65811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23755284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Oct 18;10:1349</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31681397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Res. 1999 Dec;31 Suppl:S155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10694054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2020 Mar 18;251(4):82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32189080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):15-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):454-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Dec;64(5):825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21105929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2007;152(4):747-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17143780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2018 Aug;44:164-174</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30071473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2013 Jun;13(12-13):2031-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2019 Aug 25;57:341-365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31283433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2005 Jan;7(1):49-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15666214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2016 Aug;1864(8):952-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26861774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2018 Mar 14;69(6):1325-1333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29294077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Dec;157(4):2000-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22007023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Feb;18(2):397-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16387834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Aug;223(3):1127-1142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30843207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2017 Dec 20;27(18):1505-1519</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28457165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2019 Mar;109(3):332-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30451636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jul;117(3):1103-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9662553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Jul;223(2):590-596</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30851201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jun 04;10:705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31214223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Mar;36(3):721-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22978428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2020 Jan;225(1):87-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31209880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(5):e1002684</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):941-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17651371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 Feb;176(2):1156-1170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29298823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2018 May;16(5):316-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29479077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Mar;53(6):999-1012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Dec;89:1154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2003 Jun;148(6):1119-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12756618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2014 Oct;227:133-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25219315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Sep;83(5):926-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26213235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):878-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17316176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 May;1840(5):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24060746</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Zechmann, Bernd" sort="Zechmann, Bernd" uniqKey="Zechmann B" first="Bernd" last="Zechmann">Bernd Zechmann</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000012 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000012 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32825274
   |texte=   Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32825274" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020